Law of inferences |
Here are the symbols of various logical operators as I use them on this website (there is no one, universal list of symbols, though certain norms are adhered to across the spectrum):
∧ = And
∨ = Or
→ = If…then
¬ = Not (negation)
≡ = Logical Equivalence
Here are the most common inferences in symbolic logic:
1) Modus Ponens (MP)
P → Q
P
Therefore, Q
2) Modus Tollens (MT)
P → Q
¬Q
Therefore, ¬P
3) Hypothetical Syllogism (HS)
P → Q
Q → R
Therefore, P → R
4) Disjunctive Syllogism (DS)
P ∨ Q
¬P
Therefore, Q
5) Simplification (SIMP)
P ∧ Q
Therefore, P
6) Addition (ADD)
P
Therefore, P ∨ Q
7) Double Negation (DN)
P
Therefore, ¬¬P
8) Conjunction (CONJ)
P
Q
Therefore, P ∧ Q
9) Constructive Dilemma (CD)
(P → Q) ∧ (R → S)
P ∨ R
Therefore, Q ∨ S
10) Destructive Dilemma (DD)
(P → Q) ∧ (R → S)
¬Q ∨ ¬S
Therefore, ¬P ∨ ¬R
Finally, here are the 9 logical equivalences:
1) De Morgan’s Theorem (DeM)
¬(P ∧ Q) ≡ ¬P ∨ ¬Q
¬(P ∨ Q) ≡ ¬P ∧ ¬Q
2) Commutation (Comm)
(P ∨ Q) ≡ (Q ∨ P)
(P ∧ Q) ≡ (Q ∧ P)
3) Association (Assoc)
[P ∨ (Q ∨ R)] ≡ [(P ∨ Q) ∨ R]
[P ∧ (Q ∧ R)] ≡ [(P ∧ Q) ∧ R]
4) Distribution (Dist)
[P ∧ (Q ∨ R)] ≡ [(P ∧ Q) ∨ (P ∧ R)]
[P ∨ (Q ∧ R)] ≡ [(P ∨ Q) ∧ (P ∨ R)]
5) Double Negation (DN)
¬¬P ≡ P
6) Transposition (TRANS)
P→Q ≡ ¬Q→¬P
7) Material Implication (IMP)
P→Q ≡ ¬P ∨ Q
8) Material Equivalence (Equiv)
P≡Q ≡ [(P→Q) ∧ (Q→P)]
P≡Q ≡ [(P ∧ Q) ∨ (¬P ∧ ¬Q)
9) Exportation (Exp)
[(P ∧ Q)→R] ≡ [P→(Q→R)]
10) Tautology (Taut)
P ≡ (P ∧ P)
P ≡ (P ∨ P)
Comments
Post a Comment